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1. Introduction

The necessity of quantizing gravity is a debated issue. Bohr and Rosenfeld [1] showed

that a theory in which some fields are quantized and others are not can violate some basic

principles of quantum mechanics, for example the indeterminacy principle. Rosenfeld [2]

observed that there is no direct evidence for the validity of such principles in situations

where the gravitational field is important. Feynman questioned whether gravity must be

quantized in his lectures on gravitation [3]. Møller [4] and Rosenfeld [2] gave a specific

suggestion to couple a one-half quantum and one-half classical world, in the realm of

quantum mechanics. They stated that the spacetime geometry couples to the expectation

value of the energy-momentum tensor, calculated on the quantum state of the matter

fields. Eppley and Hannah [5] showed that if matter is quantized, but gravity is classical,

then, assuming the “Copenhagen” interpretation of quantum mechanics, two scenarios are

given: if the gravitational interactions do not collapse the wave-function, gravity can be

used to propagate information at superluminal velocity; if, on the other hand, gravity
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collapses the wave-function, then either the uncertainty principle or energy-momentum

conservation can be violated. They also suggested an experiment to establish whether

gravity is quantum mechanical. Recently, Mattingly [6] questioned the feasibility of any

such experiment. Other arguments advocated to assert that gravity needs to be quantized

are weaker, because they are just based on the analogy with the other interactions of nature.

None of these observations settle the debate, actually, since experiments are unable, at

present, to ensure that the gravitational interactions obey the indeterminacy principle and

causality at arbitrarily high energies.

A remarkable fact is that the Standard Model is “ready” for the coupling with grav-

ity, in the sense that the anomaly cancellations survive the embedding in a curved back-

ground [7]. Thus it is natural to consider a partially quantized theory where the Standard

Model is embedded in external gravity, which is treated classically, and the pure-gravity

sector is described just by the Einstein action with a cosmological term. For consistency,

no higher-derivative gravitational kinetic terms should be turned on by renormalization.

The investigation of classical gravity coupled with quantum field theory in a curved

background is an alternative way to search for new physics beyond the Standard Model.

A variety of problems can be treated exactly and physical predictions can be derived.

The results can also suggest new experimental observations to determine whether gravity

must be quantized or not. Some predictions might hold also for quantum gravity, at least

qualitatively.

The main purposes of this paper are to:

1) extend the Møller-Rosenfeld approach [4, 2] to quantum field theory, formulating a

minimum principle that generates the field equations of a partially quantized theory,

2) prove that classical gravity coupled with quantum matter is renormalizable with a fi-

nite number of independent parameters, without introducing higher-derivative kinetic

terms in the gravitational sector;

3) analyze the physical effects of renormalization in the gravitational sector, such as the

violation of causality at short distances.

The quantization of fields in curved space (see for example [8]) has motivated an enor-

mous amount of work. An extension of the Møller-Rosenfeld approach has been proposed

by Schwinger and Keldysh [9], in terms of the “in-in” expectation value of the stress ten-

sor, which is both real and causal. The approach formulated here uses out-in expectation

values, to make a more direct connection with the standard formulation of quantum field

theory. Nevertheless, the other results of this paper do not depend in a crucial way on

how the stress-tensor expectation value is interpreted. In particular, with some obvious

modifications, properties 2) and 3) hold also in the Schwinger-Keldysh framework.

The renormalizability of the partially quantized theory is proved applying a theorem

stating that a term quadratically proportional to the field equations can be reabsorbed

by a field redefinition to all orders. For the investigation of this paper, such a theorem is

rephrased by a map

M : SHD → SAC (1.1)
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that relates a causal theory SHD with instabilities, typically due to higher-derivative (HD)

kinetic terms, with an acausal theory SAC without instabilities. Precisely, SHD is higher-

derivative classical gravity coupled with quantum matter, whose renormalization is straight-

forward. The matter fields circulating in the loops generate the higher-derivative countert-

erms RµνRµν and R2, which are subtracted adding these same terms to the lagrangian,

multiplied by independent parameters a and b. Instead, SAC denotes classical Einstein

gravity coupled with quantum matter. Its renormalization is less trivial. The countert-

erms RµνRµν and R2 are subtracted by means of a field redefinition of the metric tensor.

The existence of such a field redefinition is obvious to the lowest order. The map M ensures

its existence to all orders. In practice, the map M replaces the higher-derivative terms

RµνRµν and R2 by new vertices belonging to the matter sector, that couple the matter

stress tensor to the Ricci tensor, with coupling constants a and b.

A typical feature of higher derivative theories is that the field equations admit unstable

solutions. For a discussion in classical higher-derivative gravity, see for example [10]. The

field redefinition provided by the map M eliminates the unstable solutions. On the other

hand, the map M contains power series in momenta that can be resummed exactly. The

main outcome of the resummation is the violation of causality at high energies. The

causality violation is independent of the interpretation of the stress-tensor expectation

value. In particular, it is present also in the Schwinger-Keldysh approach.

The correspondence between instabilities and causality violations is inspired by an

analogous correspondence that is usually learnt in connection with the Abraham-Lorentz

force of classical electrodynamics [11] and that has been applied also to higher-derivative

gravity [12, 13]. The approach (1.1) is not equivalent to the ones existing in the literature

and is specifically designed to work efficiently in combination with renormalization.

The map M is useful to relate the renormalization properties of SHD and SAC, but it

is not just a change of variables. The theories SHD and SAC are physically inequivalent,

because the unstable solutions of SHD are not solutions of SAC. The map M is used to

show that classical gravity coupled with quantum matter is predictive, because it can be

renormalized with a finite set of independent couplings, plus field redefinitions, without

introducing higher-derivative kinetic terms in the gravitational sector.

Commonly [14] the Planck scale is considered as the physical cut-off which defines the

extreme limit of validity of semi-classical gravity and the attention is confined to predictions

that involve energy scales much greater than the Planck length. However, as long as there

is no definitive experimental evidence that gravity should be quantized, nor that causality

should hold at arbitrarily high energies, there is no compelling reason to consider the

model of this paper as an effective one. In such a situation, it belongs to the duties of

a theorist to investigate also the consequences that follow from the assumption that the

model is a fundamental theory, valid at arbitrarily high energies. This attitude is also the

most efficient one to eventually uncover reasons to reject the assumption. As mentioned

above, in the acausal theory constructed here, certain power series in the momenta can be

resummed exactly, so it is compulsory to take these resummations seriously and inquire

about their physical meaning, if any. What happens is that the stress tensor gets averaged

in an acausal way, because the average receives contributions also from the future light
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cone and from spacelike separated points. The causality violations are parametrized by

a and b′ = −2(a + 3b). At the tree level, there exist causal prescriptions, if a and b′ are

negative. However, the radiative corrections spoil the causal prescriptions and produce

causality violations in any case.

The physical effects of the couplings a and b′ can be detected also in causal situations.

Experimental bounds on the values of a and b′ can be derived from the tests about the

validity of Newton’s law at short distances.

The map M cannot be applied to quantum gravity, at least in a straightforward way.

This is a weakness of the model if gravity ultimately needs to be quantized. It is a good

feature of the model, instead, if gravity does not need to be quantized. Still, the results

of this paper might inspire the search for appropriate generalizations of the map M to

quantum gravity.

The paper is organized as follows. The minimization principle for fully and partially

quantized field theories is treated in section 2. The map M is studied in section 3 and

worked out explicitly for gravity in the quadratic approximation. A source term is then

added to study the physical effects. In section 4 the map M is used to prove the renor-

malizability of the theory. Section 5 is devoted to the investigation of causality violations

and their relation with instabilities. Section 6 contains the conclusions.

2. Minimum principles for fully and partially quantized field theories

According to the Møller-Rosenfeld approach [4, 2], in quantum mechanics classical grav-

ity couples to the expectation value of the energy-momentum tensor, calculated on the

quantum state ψ of the matter fields. The Einstein equations read

Rµν − 1

2
gµνR = −κ2 〈ψ |Tµν |ψ〉 . (2.1)

The generalization of this equation to classical gravity coupled with quantized fields has

been discussed by various authors in the literature. In the Schwinger-Keldysh [9] ap-

proach, the right-hand side of (2.1) is replaced with the “in-in” expectation value of the

stress tensor, so it is both real and causal. Functional methods for the calculation of in-in

expectation values have been developed [15, 16]. It is important to observe that the renor-

malization structure does not depend on the interpretation of the right-hand side of (and

R2 calculated in the Schwinger-Kleydish approach are identical to those calculated in the

usual approach [16]. The causality violations discussed here, which are due to the renor-

malization of RµνRµν and R2 via metric-tensor field redefinitions, are independent of the

generalization of (2.1) to quantum field theory, so they exist also in the Schwinger-Keldysh

approach.

Since causality is anyway violated in the end, it is meaningful to study a generalization

of (2.1) that is closer to the standard formulation of quantum field theory, where correlation

functions are out-in expectation values. The prescrition adopted in this paper is to replace

the right-hand side of (2.1) with the real part of the out-in expectation value of the stress

tensor.
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Specifically, in a fully quantized theory the quantum action Sq[ϕq], depending on the

quantum fields ϕq, is defined as the real part of the generating functional Γ[Φ] of one-particle

irreducible Green functions, under the assumption that i) ϕq ≡ Φ is real, if the fields ϕ

are real bosonic, or ii) ϕq = Φ is the conjugate of Φ, if the fields ϕ are complex bosonic

or fermionic. The variation of Sq with respect to ϕq gives the quantum field equations.

This minimum principle applies both to fully quantized theories and to partially classical,

partially quantum theories.

Consider a quantum field theory of fields ϕ. I first assume that the ϕ’s are real

bosonic and later generalize the argument to the other types of fields. Define, as usual, the

generating functionals

Z[J ] =

∫
Dϕ exp

[
i

∫
d4x (L[ϕ(x)] + J(x)ϕ(x))

]

and

W [J ] = i ln Z[J ], Γ[Φ] = −W [J [Φ]] −
∫

d4x J [Φ](x) Φ(x),

of disconnected, connected and one-particle irreducible correlation functions, respectively,

where

Φ[J ](x) = 〈ϕ(x)〉J = −δW [J ]

δJ(x)
, J [Φ](x) = − δΓ

δΦ(x)
.

For the moment it is convenient to work with real fields ϕ. Then it is natural to take real

sources J . Nevertheless, Z[J ], W [J ] and Φ[J ] are complex functionals of J . The imaginary

parts of the T-ordered correlation functions are originated by the iε-prescription in the

propagators. Consequently, if J is real, Φ cannot be a good quantum field and Γ,W,Z

cannot be good quantum actions.

In a more general framework, assume that the sources J are complex. Observe that now

J are complex sources for real fields ϕ. The T-anti-ordered Green functions are encoded

in the conjugate functionals

W ∗[J∗], Φ∗[J∗] = −δW ∗[J∗]

δJ∗ , Γ∗[Φ∗] = −W ∗[J∗] − J∗ · Φ∗. (2.2)

For convenience, integrals such as
∫

d4x J(x)Φ(x) are often shortened as J · Φ.

Write J = Jq + iJ ′
q, where Jq, J ′

q are real. Now I prove that there exists a unique

functional J ′
q[Jq], in perturbation theory, such that Φ[J ] is real.

The reality of Φ[J ] is expressed by the condition

Φ[J ] = Φ∗[J∗], i.e.
δW

δJ
[Jq + iJ ′

q] =
δW ∗

δJ∗ [Jq − iJ ′
q]. (2.3)

Formula (2.3) is an equation for J ′
q[Jq]. Since at the tree level Γ[Φ] is real and coincides

with the classical action, J ′
q is at least one loop. In the perturbative expansion (2.3) reads

J ′
q

{
δ2W

δJ2
[Jq] +

δ2W ∗

δJ∗2 [Jq]

}
= −iΦ[Jq] + iΦ∗[Jq] + O(J ′2

q ). (2.4)
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This equation admits one solution, since J ′
q, on the left-hand side, is multiplied by the real

part of the two-point function, which is certainly invertible. For example, in momentum

space for scalar fields
δ2W

δJ̃(−p)δJ̃(p)
=

1

p2 − m2 + iε
+ O(λ),

where λ collectively denotes the coupling constants that parametrize the interactions of

the theory. The left-hand side of (2.4) is just

2 P

(
1

p2 − m2

)
J̃ ′

q(p) + O(λJ ′
q),

where P denotes the principal part. Returning to coordinate space, the solution reads

J ′
q[Jq] = −(∂2 + m2) Im Φ[Jq] + O(λJ ′

q, J
′2
q ).

The higher orders can be worked out recursively in powers of λ and in the loop expansion.

Because of its reality, the functional Φ[Jq + iJ ′
q[Jq]] can be taken as the quantum field

ϕq[Jq], with source Jq. Then the quantum action is

Sq[ϕq] ≡ Re Γ[ϕq]

and coincides with the Legendre transform of Re W , written as a functional of Jq. Indeed,

consider

Wq[Jq] ≡ ReW [Jq + iJ ′
q[Jq]].

It is immediate to show, using (2.3), that

−δWq[Jq]

δJq
= Φ[Jq + iJ ′

q[Jq]] = Φ∗[Jq − iJ ′
q[Jq]] = ϕq[Jq].

Then, if Jq[ϕq] denotes the inverse of ϕq[Jq], the Legendre transform gives

−Wq[Jq[ϕq]] − Jq[ϕq] · ϕq = Re Γ[Φ] = Sq[ϕq],

as desired.

Summarizing, there exists a unique complex source J such that the functional Φ[J ] is

real. The quantum field ϕq coincides with Φ and the quantum action Sq[ϕq] is just the real

part of Γ[Φ].

The generating functional Γ[Φ] can be reconstructed from the quantum action Sq[ϕq].

Indeed, Sq[ϕq] contains the reals parts of the T-ordered Green functions. The imaginary

parts of the Green functions can be perturbatively calculated from the real parts.

For example, if the theory is unitary, the unitarity equation reads

ImT =
1

2
TT †, (2.5)

where S = 1 + iT is the S-matrix, SS† = 1. Since T is at least of order one in the inter-

actions, (2.5) implies that Im T is at least of order two. So, the equation (2.5) recursively

determines the imaginary parts of the correlation functions from the lower-order real parts.
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If the theory is not unitary, a more general version of the identity (2.5), with the same

structure as (2.5), follows from the largest time equation [17]. It cannot be interpreted as a

unitarity equation (the summation over intermediate states is affected by minus signs, due

to propagating ghosts), but it can be used to calculate the imaginary parts of correlation

functions from the lower-order real parts.

Thus, in complete generality the quantum action Sq[ϕq] contains the full information

about the theory.

The arguments of this section can be applied also to a partially classical, partially quan-

tum field theory. In that case, let ϕc denote the classical fields, with action Sc[ϕc], and ϕ the

quantized fields, with classical action S[ϕ,ϕc], embedded in the external ϕc-background.

The procedure described above defines the quantum action Sq[ϕq, ϕc] = ReΓ[Φ, ϕc], with

ϕq = Φ = real. The total action Stot[ϕc, ϕq] of the partially classical, partially quantum

theory is obtained adding the classical action Sc of the fields ϕc to Sq, namely

Stot[ϕc, ϕq] = Sc[ϕc] + Sq[ϕq, ϕc].

For example, for classical gravity coupled with quantum matter, ϕc is the metric tensor

gµν , Sc is the Einstein action, and Sq is the real part of the Γ functional in external gravity,

so

Stot[g, ϕq ] =
1

2κ2

∫
d4x

√−g [R(g) − 2Λ] + Re Γ[ϕq, g]. (2.6)

The field equations of gravity are δStot[g, ϕq ]/δg
µν = 0, namely

Rµν − 1

2
gµνR + gµνΛ = −κ2 Re 〈Tµν〉 , 〈Tµν〉 =

2√−g

δΓ[ϕq , g]

δgµν
. (2.7)

The matter field equations are δStot[g, ϕq ]/δϕq = 0 and have to be solved consistently

with (2.7). The simplest solution is ϕq = 0 or ϕq =constant (if there is a vacuum ex-

pectation value). Then the Einstein equations (2.7) describe how the spacetime geometry

is affected by quantized matter fields circulating in the loops. Together with (2.7), they

generalize the Møller-Rosenfeld approach (2.1) to quantum field theory.

Working with complex bosonic fields and/or fermionic fields ϕ, ϕ, denote the associated

sources with J , J . The functionals are Z[J, J ], W [J, J ] and Γ[Φ,Φ], which is the Legendre

transform of W [J, J ]. Repeating the argument outlined above, if the source J is the

conjugate of J , then the functional Φ[J, J ] is not the conjugate of Φ[J, J ]. Instead, if the

sources J , J are not the conjugates of each other, the relation between J and J can be

determined imposing that the functional Φ[J, J ] is the conjugate of Φ[J, J ]. In that case,

the quantum action is

Sq[ϕq, ϕq] =
1

2

(
Γ[Φ,Φ] + Γ†[Φ,Φ]

)
,

where ϕq = Φ, ϕq = Φ. The other arguments extend straightforwardly.

In the presence of non-Abelian gauge fields, the gauge transformation of Φ can be

a complex, non-local functional 〈sΦ〉, where s denotes the BRST operator. Then the

definition of a gauge invariant real quantum functional Sq[ϕq] is not evident, at least in the

most general framework. It is preferable to define the functional Γ[Φ] using the background
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field method [18], where now Φ denotes the background field, and the quantum field is set

to zero. The background field method ensures manifest gauge invariance and, most of all,

the gauge transformation of Φ preserves the reality of Φ. Then it is straightforward to

identify Φ with the quantum field ϕq and define the quantum action Sq[ϕq] as the real part

of Γ.

Even using the background field method, however, the functional Γ depends on the

gauge-fixing parameters. Call G the unbroken non-Abelian gauge group of the theory and

ϕG the fields that transform non-trivially under G. The ϕG-quantum field equations can

be solved setting all ϕG’s to zero. The physical justification is that the G-interactions are

short-range (and even confining in QCD), so the boundary conditions for the ϕG’s are that

they tend to zero with an appropriate velocity at infinity, which implies ϕG ≡ 0 by the

unicity of the solution.

Setting all ϕG’s to zero removes also the gauge-fixing dependence of Γ. Indeed, at

ϕG = 0, the functional Γ depends only on gµν and the other G-invariant fields, namely it is

a collection of correlation functions containing only insertions of G-invariant operators, so,

by the usual BRST arguments, it cannot depend on the gauge-fixing parameters. Abelian

gauge fields A need not be set to zero, since Γ is both gauge invariant and gauge-fixing

independent at A 6= 0.

In Euclidean theories, which are employed, for example, in the study of critical phe-

nomena, the average field Φ = 〈ϕ〉J,J is the conjugate of Φ = 〈ϕ〉J,J and the generating

functionals W [J, J ] and Γ[Φ,Φ] are hermitian, if the sources J are the conjugates of J .

Then the functional Γ[Φ,Φ] is the good quantum action, Φ and Φ being the quantum

fields.

3. Field redefinitions that reabsorb terms quadratically proportional to

the field equations

In this section I prove that a term quadratically proportional to the field equations can be

reabsorbed with a field redefinition. This theorem is used to construct the map M that

relates the higher-derivative theory with the acausal theory.

Consider an action S depending on the fields φi, where the index i labels both the field

type, the component and the spacetime point. Add a term quadratically proportional to

the field equations Si ≡ δS/δφi and define the modified action

S′[φi] = S[φi] + SiFijSj,

where Fij is symmetric and can contain derivative operators. Summation over repeated

indices (including the integration over spacetime points) is understood. The theorem states

that there exists a field redefinition

φ′
i = φi + ∆ijSj, (3.1)

with ∆ij symmetric, such that, perturbatively in F and to all orders in powers of F ,

S′[φi] = S[φ′
i]. (3.2)

– 8 –
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Here is the proof. The condition (3.2) can be written as

S[φi] + SiFijSj = S[φi + Sj∆ij] = S[φi] +

∞∑

n=1

1

n!
Sk1···kn

n∏

l=1

(∆klml
Sml

),

after a Taylor expansion, where Sk1···kn
≡ δnS/(δφk1

· · · δφkn
). This equality is verified if

∆ij = Fij − ∆k1i∆k2j

∞∑

n=2

1

n!
Sk1k2k3···kn

n∏

l=3

(∆klml
Sml

), (3.3)

where the product is meant to be equal to unity when n = 2. Equation (3.3) can be solved

recursively for ∆ in powers of F . The first terms of the solution are

∆ij = Fij −
1

2
Fk1iFk2jSk1k2

+ · · · (3.4)

The theorem just proved is very general. It works both for local and non-local theories.

Assume that the spacetime dimension d is greater than two, so that the fields ϕ have positive

dimensionalities dϕ in units of mass. Call “perturbatively local” a functional that can be

expanded in powers of the fields and their derivatives. That means, for example, that it

does not contain low-energy singularities, such as 1/∂µ, 1/¤, etc. Call “perturbatively

local expansion” the expansion in powers of the fields and their derivatives. If S′[φi] and

S[φi] are perturbatively local, then Fxy has the form

Fxy = (fx + fµ
x ∂µ + fµν

x ∂µ∂ν + · · ·) δ(x − y), (3.5)

where fµ1···µn
x are perturbatively local tensorial functionals of the fields φ and their deriva-

tives in x. Now I prove that the field redefinition (3.1) is perturbatively local, and the

solution of (3.3) can be worked out recursively and has the same form as (3.5), namely

∆xy = (gx + gµ
x∂µ + gµν

x ∂µ∂ν + · · ·) δ(x − y), gµ1···µk
x = fµ1···µk

x + O(f2). (3.6)

The functionals gµ1···µm
x , fµ1···µm

x have dimensionalities 2dϕ−d−m < 0. Equation (3.3)

splits into separate equations for gµ1···µk
x , that can be solved recursively in powers of fµ1···µm

x .

Each functional fµ1···µm
x can be considered of the same order. At each order in f the solution

is worked out term-by-term in the perturbatively local expansion.

Write the perturbatively local expansions of fµ1···µm
x and gµ1···µm

x as

fµ1···µm
x =

∑
c
(m,p,q)
f Oµ1···µm

p,q [ϕ(x)], gµ1···µm
x =

∑
c(m,p,q)
g Oµ1···µm

p,q [ϕ(x)],

where Oµ1···µm
p,q [ϕ] denotes a basis of local operators constructed with p derivatives and q

fields and c
(m,p,q)
f , c

(m,p,q)
g are numerical coefficients, with dimensionalities 2dϕ − d − m −

p − qdϕ < 0. Finitely many parameters M with positive dimensionalities are contained in

the action S. The dimensionalities of M are obviously bounded by d. Each term in the

sum of (3.3) is polynomial in M , so (3.3) can be translated into equations for the cg’s that

have schematically the form

cg = cf +

∞∑

n=2

Pn−1(M)cn
g , (3.7)
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where Pn−1(M) is a polynomial of degree n − 1 in M . Thus each cg receives O(fn)

contributions from a finite number of coefficients cf ’s, which proves that the equations (3.7)

can be solved recursively.

If both S′[φi] and S[φi] are local, Fxy is local. Even then, in general, ∆xy is only

perturbatively local. Actually, the resummation of derivatives in (3.6) can produce a non-

local field redefinition. Take an ordinary free field theory S[φi]. Then Sk1···kn
= 0 for every

n > 2, while Sk1k2
is field-independent and quadratic in the derivatives. The modified

action S′[φi] describes a higher-derivative theory. Equation (3.3) reads

∆ij = Fij −
1

2
∆k1i∆k2jSk1k2

and is solved in matrix form by

∆ =
(√

1 + 2FS − 1
)

S−1.

Clearly, the solution ∆ij is non-local, but perturbatively local. In the next subsection these

facts are illustrated explicitly for gravity in the quadratic approximation.

A known situation where the theorem applies is the three-dimensional U(1) gauge

theory. The field equations of the Chern-Simons action

S[A] =
1

2αCS

∫
εµνρFµνAρ

are Fµν = 0, so there exists a field redefinition A′
µ(A,α/αCS) such that

S′[A] = S[A′], (3.8)

where S′ is the sum of the Chern-Simons action plus the square of the field strength,

S′[A] =
1

αCS

∫
εµνρFµνAρ −

1

4α

∫
FµνFµν .

3.1 The map M for gravity

In pure gravity, the theorem just proved ensures that there exists a field redefinition that

maps a class of higher-derivative theories into the Einstein theory. For example, there

exists a field redefinition g → g′(g, a, b) such that

SHD[g] = SE[g′], (3.9)

where

SHD[g] =
1

2κ2

∫ √−g
[
R(g) + aRµνRµν(g) + bR2(g)

]
, (3.10)

SE[g] =
1

2κ2

∫ √−gR(g) (3.11)

Indeed, the terms RµνRµν and R2 are quadratically proportional to the field equations of

the action SE[g]. The lowest-order contributions to the map M are, from (3.1), (3.4),

g′µν(g, a, b) = gµν − aRµν +
1

2
(a + 2b)gµνR + O(a2, b2, ab). (3.12)
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I stress once again that the identity (3.9) does not imply that higher-derivative gravity

is physically equivalent to Einstein gravity. Indeed, it is evident, already in the free-field

limit, that the degrees of freedom of SHD and SE are different. Nevertheless, formula (3.9)

and the more general identity (3.2) are useful to relate the renormalization properties

of the two theories. In the next section the identity (3.9) is used to prove that classical

gravity coupled with quantum matter is predictive, namely all divergences are renormalized

redefining the fields and a finite number of independent couplings.

The field redefinition g′(g, a, b) is the map M for gravity. It is clearly nonlocal. When

a source term is added, the map is in general acausal (see the subsection 3.3 and section

5). Thus, in general the map g′(g) relates higher-derivative gravity with acausal gravity.

In the presence of a cosmological constant, the theorem ensures that there exists a

field redefinition g′(g) such that

S
(Λ)
HD[g] = S

(Λ)
E [g′], (3.13)

where

S
(Λ)
HD[g] = SHD[g] − Λ

κ2

∫ √−g =
1

2κ̃2

∫ √−g
[
R(g) − 2Λ + ãR̂µνR̂µν(g) + b̃R̂2(g)

]
,

S
(Λ)
E [g] =

1

2κ̃2

∫ √−g [R(g) − 2Λ] ,

and κ2 = κ̃2(1 + 2aΛ + 8bΛ), ã = aκ̃2/κ2, b̃ = bκ̃2/κ2. Indeed, the hatted tensors

R̂µν = Rµν − gµνΛ, R̂ = R − 4Λ, (3.14)

vanish on the solutions to the field equations of S
(Λ)
E [g].

In the next subsection the map g′(g) is worked out explicitly in the quadratic approx-

imation in the absence of a cosmological constant.

3.2 The map M for gravity in the quadratic approximation

It is instructive to work out the field redefinition explicitly for gravity in the quadratic

approximation. The expansion around flat space is defined as

gµν = ηµν + 2κφµν ,

where ηµν =diag(1,−1,−1,−1). The trace of φµν is denoted with φ. Below, I use the

convention t2µ1···µn
≡ tµ1···µntµ1···µn , where tµ1···µn is any tensor.

The identity (3.9) reads, in the quadratic approximation,

S′[φ] = S[φ′], (3.15)

where

S[φ] =
1

2

∫
d4x

{
(∂µφρσ)2 − (∂µφ)2 + 2(∂µφ)(∂νφµν) − 2(∂µφµν)2

}
,

S′[φ] = S[φ] +
1

2

∫
d4x

{
a (¤φµν +∂µ∂νφ−∂µ∂αφνα−∂ν∂αφµα)2 +4b (¤φ−∂µ∂νφµν)2

}
,
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and the field transformation is

φµν =
1√

1 − a¤

(
φ′

µν − 1

3
ηµνφ′ + ηµν

1

3¤
∂ρ∂σφ′

ρσ

)
+

ηµν

3
√

1 − b′¤

(
φ′ − 1

¤
∂ρ∂σφ′

ρσ

)
,

(3.16)

where b′ ≡ −2(a + 3b).

It is immediate to check that

φ̃µν =
1√

1 − a¤
φ̃′

µν , (3.17)

where φ̃µν and φ̃′
µν are the traceless parts of φµν and φ′

µν , respectively. If b′ = a the

transformation (3.16) becomes simply

φµν =
1√

1 − a¤
φ′

µν . (3.18)

Due to (3.17), the gauge-fixing

∂µφ̃′
µν = 0 (3.19)

implies also

∂µφ̃µν = 0. (3.20)

Using (3.19) and (3.20), the identity (3.15) simplifies to

1

2

∫
d4x

{
(∂µφ̃ρσ)2+a(¤φ̃µν)2− 3

8

[
(∂µφ)2+b′(¤φ)2

]}
=

1

2

∫
d4x

{
(∂µφ̃′

ρσ)2− 3

8
(∂µφ′)2

}

and the field redefinition (3.16) becomes

φ̃µν =
1√

1 − a¤
φ̃′

µν , φ =
1√

1 − b′¤
φ′. (3.21)

3.3 Physical effects

A non-renormalizable theory contains infinitely many vertices, with an arbitrarily high

number of derivatives. The usual low-energy expansion is obtained expanding the action in

powers of the fields and their momenta and considering the (bosonic) fields and momenta

of the same order. However, sometimes it is useful to study different expansions. For

example, there are situations where it is possible to resum the expansion in powers of

the fields exactly, but it not straightforward to resum the expansion in powers of the

momenta [19]. Here, instead, the expansion in powers of the fields is difficult to resum, but

it is straightforward to resum certain expansions in powers of the momenta, which lead for

example to the square roots of formulas (3.16) and (3.24). The resummation of momenta

is meaningful in a regime in which the fields are weak, but not necessarily slowly varying,

where it is sufficient to keep only the linear and quadratic terms in φ′.

Thus, to illustrate the effects on interactions in the weak-field approximation, add a

source term

Ssource[φ, T ] = −κ

∫
d4x φµνT µν , (3.22)
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where Tµν is the energy-momentum tensor. Then (3.15) extends to

SHD[φ, T ] = SAC[φ′, T ], (3.23)

where

SHD[φ, T ] = S′[φ] + Ssource[φ, T ], SAC[φ′, T ] = S[φ′] + Ssource[φ
′, T ′(T )]

and

T ′
µν(T ) =

1√
1 − a¤

(
Tµν − 1

3
ηµνT +

1

3¤
∂µ∂νT

)
+

1

3
√

1 − b′¤

(
ηµνT − 1

¤
∂µ∂νT

)
,

(3.24)

T being the trace of Tµν . The expansions of (3.16) and (3.24) in powers of a and b′ are

perturbatively local, in agreement with the conclusions derived previously. At the non-

perturbative level in a and b′, the operators

1√
1 − a¤

,
1√

1 − b′¤
(3.25)

stand for convolutions with the generalized functions

C(f)
4 (x) =

∫
d4k

(2π)4
e−ikx

√
1 + fk2

, (3.26)

where f = a, b′. The operator 1/¤ in (3.24) stands for the convolution with

G4(t,x) =
1

4π|x|δ(t − |x|). (3.27)

The Fourier transforms (3.26) need prescriptions for the contour integrations. The prescrip-

tions must ensure that the f → 0 limits of C(f)
4 (x) are regular, for the reasons explained

below.

The action SAC[φ′, T ] couples the field φ′
µν with T ′

µν(T ), which is a sort of spacetime

average of the matter stress tensor Tµν . In section 5 it is shown that if f is negative

C(f)
4 admits a real causal prescription. That prescription, however, does not survive the

radiative corrections and ultimately the value of T ′
µν(t,x) at time t depend also on the

spacetime points that are located in the future light cone of x or are spacelike separated

from x. Then, causality is violated.

If a complex prescription is used for (3.26), the conclusions of the previous section

apply, and the tree-level quantum action SqAC[φ′, T ] is the real part of SAC[φ′, T ], with the

convention that the quantum field ϕq ≡ φ′ is real. Neither the choice of the prescription,

nor the suppression of the imaginary part of SAC[φ′, T ], affect the perturbative expansion

in powers of a and b′ and the renormalizability of the theory, discussed in the next section.

Note that resummations similar to the ones that lead to (3.25) are familiar in high-

energy physics, where they are produced by the renormalization group. Specifically, the

renormalization group is able to resum certain expansions in powers of the couplings and the

logarithms of momenta. In gravity the coupling is, in some sense, itself a momentum. Then
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the gravitational analogue is the resummation of an expansion in powers of momenta and

the logarithms of momenta. In section 5 the radiative corrections are included, and produce

the expected dependence on the logarithms of momenta, see formulas (5.28) and (5.29).

The identity (3.23) is the map M for classical gravity in the weak-field approximation.

The action SHD contains higher-derivative kinetic terms, while the action SAC does not.

Now, assume that the physical theory is SqAC[φ′, T ]. That means that the spacetime

geometry is described by φ′
µν and the source of the physical interaction is Tµν . However,

the spacetime geometry is not affected directly by Tµν . Instead, it is sensitive to the

“effective stress-tensor” ReT ′
µν , which is a spacetime average of Tµν . Observe that ReT ′

µν

need not obey the positivity constraints obeyed by Tµν . Using the gauge-fixing

∂νφ′
µν =

1

2
∂µφ′, (3.28)

the gravitational field equations read

¤φ′
µν = −κReT ′

µν(T ) +
κ

2
ηµνReT ′(T ). (3.29)

Equation (3.29) is a second-order partial differential equation and must be supplemented

with the usual boundary conditions, e.g. φ′
µν(t0,x) and ∂0φ

′
µν(t0,x) at the initial time t0.

It is instructive to compare equation (3.29) with the equation generated by the higher-

derivative theory. Assume that the physical theory is SHD[φ, T ]. Then, with the gauge-

fixing analogous to (3.28), the field equation for φµν reads

¤φµν − 1

2
ηµν¤φ − a

(
¤

2φµν +
1

2
ηµν¤

2φ − ¤∂µ∂νφ

)
− 2b (¤ηµν − ∂µ∂ν) ¤φ = −κTµν .

(3.30)

This equation is a fourth-order partial differential equation and must be supplemented with

unusual boundary conditions, e.g. ∂n
0 φ′

µν(t0,x), n = 0, 1, 2, 3 at the initial time t0. It has

extra solutions that (3.29) does not have. In particular, ¤φµν 6= 0 even at Tµν = 0. Thus,

equations (3.29) and (3.30) are physically inequivalent.

When the higher-derivative local equation (3.30) is converted into the second-order

non-local equation (3.29) by the map M, the extra solutions of (3.30) disappear. They

are killed by the requirement that the generalized functions (3.26) be regular in the limit

f → 0. In practice, the map M consists of a universal choice of the extra boundary condi-

tions, which suppresses the unwanted degrees of freedom, but in general produces causality

violations. These ideas are inspired by known treatments of the Abraham-Lorentz force

in classical electrodynamics [11], which are reviewed in section 5. To be precise, a certain

ambiguity survives also in (3.29), due to the freedom to choose different prescriptions for

C(f)
4 (x).

The causality violations can be physically tested studying, for example, the gravita-

tional force predicted by SqAC[φ′, T ]. Consider a set of small rigid spheres of masses mi

and radii Ri, moving along trajectories ri(t). The mass distributions are ρi(x− ri), where

ρi(r) = 3mi/(4πR3
i ) for |r| ≤ Ri and ρi(r) = 0 for |r| > Ri. The stress-energy tensor reads

T µν(t,x) =
∑

i

ρi(x − ri(t))√
1 − ṙ2

i (t)
vµ
i (t)vν

i (t), (3.31)
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where vµ
i (t) = (1, ṙi(t)). The total action, including the kinetic terms of the spheres, is

Stot[φ
′, ri] = SqAC[φ′, T ] −

∑

i

mi

∫
dt

√
1 − ṙ2

i (t). (3.32)

The equations of motions of Stot[φ
′, ri] are involved, but some qualitative aspects of their

solutions can be studied in the non-relativistic limit, where the time derivatives of (3.29)

and (3.30) are negligible and the causality violations disappear. The stress tensor (3.31)

simplifies to

T00(x) =
∑

i

miρi(x − ri),

any other component being negligible. From (5.23), the generalized functions (3.26) become

C(f)
4 (x) → −δ(t)K1(r/

√−f)

2π2fr
. (3.33)

For concreteness, assume that the spheres are pointlike, ρi(r) = miδ
(3)(r). Using (3.33),

T ′
µν has components

T ′
00(x) =

∑

i

2

3
ρ
(a)
i (x) +

1

3
ρ
(b′)
i (x), ρ

(f)
i (x) =

miK1(|x − ri|/
√−f)

2π2(−f)|x− ri|
,

and

T ′
ij(x) =

1

3

(
δij −

∂i∂j

4

)(
ρ
(a)
i (x) − ρ

(b′)
i (x)

)
,

while T ′
i0 = 0. In practice, a pointlike sphere effectively smears out into distributions of

mass ρ
(f)
i (x), which are sensibly different from zero in regions of radii

√
|f |.

The force is Fi = −∇iU . The potential energy U can be read from

1

2
ReSsource[φ

′, T ′] = −
∫

dt U, (3.34)

and φ′
µν can be calculated from (3.29), using (3.27). The factor one half in (3.34) is because

φ′
µν is proportional to T ′

µν . The result is

U = −κ2

8π

∫
d3x d3x′

|x − x′|

(
ReT ′

µν(x)ReT ′µν(x′) − 1

2
ReT ′(x)ReT ′(x′)

)
. (3.35)

For a, b′ < 0 the integral gives

U = −κ2

8π

∑

i<j

mimj

rij

(
1 − 4

3
e−rij/

√
−a +

1

3
e−rij/

√
−b′

)
, rij = |ri − rj |, (3.36)

where the self-energies have been subtracted away.

The generalization of U when either a or b′ is positive is simple, but left to the reader.

So far, the Newton law has been verified down to about 0.1 millimeters [20] without

observing any deviations, so the experimental bound on the values of |a| and |b′| is

|a|, |b′| < 2.5 · 105(eV)−2. (3.37)
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4. Renormalization of classical gravity coupled with quantum matter

In this section I show that the divergences of acausal gravity coupled with quantum mat-

ter can be removed with a finite number of independent couplings without introducing

higher-derivative terms in the gravitational sector. The map M is used to relate the

renormalization of acausal gravity coupled with quantum matter to the renormalization of

higher-derivative gravity coupled with quantum matter.

For simplicity, I first consider a theory that does not contain parameters with positive

dimensionality in units of mass. The generalization to theories with cosmological constant,

masses and super-renormalizable couplings is described later on. Moreover, I use the

dimensional regularization technique, which is BRST invariant and does not produce power-

like divergences.

The classical action is written as

SAC[g, ϕ, λ, λ′, κ] =
1

2κ2

∫
d4x

√−gR + Sm[ϕ, g, λ] + ∆Sm[ϕ, g, λ, λ′]. (4.1)

Here Sm collects the power-counting renormalizable terms of the matter action embedded

in external gravity and λ denotes the dimensionless couplings of Sm. For example, in the

case of (massless) QED Sm is equal to

Sm =

∫
d4x

√−g

(
−1

4
FµνFµν + ψiD/ψ

)
, (4.2)

where Dµ = Dµ + ieAµ is the covariant derivative. In the case of scalar fields, the action

Sm includes also the non-minimal term Rϕ2:

Sm =

∫
d4x

√−g

(
1

2
gµν(∂µϕ)(∂νϕ) − 1 + 2η

12
Rϕ2 − λ

4!
ϕ4

)
. (4.3)

In (4.1) ∆Sm collects the terms of dimensionality greater than four, parametrized by

couplings λ′ with negative dimensionalities in units of mass.

In four dimensions, neither Sm nor ∆Sm include pure-gravity terms, namely

Sm[0, g, λ] = ∆Sm[0, g, λ, λ′] = 0. In higher dimensions this requirement has to be ap-

propriately modified (see below).

The theory is renormalizable if the correction ∆Sm to the matter action is such that the

divergences of (4.1) are subtracted away renormalizing the couplings of (4.1) and redefining

the fields. The field redefinition of gµν cannot depend on the matter fields, because the

matter fields are quantized (they are integrated in the functional integral), while the metric

tensors gµν is just an external source.

4.1 Renormalizability of the higher-derivative theory

Before proving the renormalizability of the acausal theory, I recall the properties of the

higher-derivative theory. The action of the higher-derivative classical gravity coupled with

quantum matter is

SHD[g, ϕ, λ, a, b, κ] =
1

2κ2

∫
d4x

√
−g

(
R + aRµνR

µν
+ bR

2
)

+ Sm[ϕ, g, λ], (4.4)
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where Rµν = Rµν(g). The metric tensor is denoted with g to distinguish it from the metric

tensor g of the theory (4.1).

As in the theory (4.1), only the matter fields ϕ are quantized. By power-counting, the

renormalization of Sm generates counterterms of dimensionality four, which can be grouped

in four classes: counterterms proportional to the terms of Sm, counterterms proportional to

the field equations, BRST-exact counterterms and pure-gravity counterterms. The pure-

gravity counterterms are
∫

d4x
√

−g
(
αRµνρσR

µνρσ
+ βRµνR

µν
+ γR

2
)

, (4.5)

but, as usual, the first term of this list is converted into a combination of the other two,

up to a total derivative, using the Gauss-Bonnet identity. Thus, the higher-derivative

theory (4.4) can be renormalized redefining the matter fields ϕ and the parameters λ, a

and b. The ϕ-redefinition is just multiplicative (ϕB = Z
1/2
ϕ ϕ), so it does not depend on the

gravitational background.

The bare action reads

SHD B = SHD[g, ϕB, λB, aB, bB, κ]

=
1

2κ2

∫
d4x

√
−g

(
R + aBRµνR

µν
+ bBR

2
)

+ Sm[ϕB, g, λB]. (4.6)

There is no need to redefine the metric tensor and the Newton constant, so gµνB = gµν

and κB = κ.

Finally, the generating functional ΓHD[g,Φ, λ, a, b, κ] of one-particle irreducible Green

functions is defined by

∫
Dϕ exp

(
iSHD B + i

∫ √
−gJϕ

)
= exp

(
iΓHD[g,Φ, λ, a, b, κ] + i

∫ √−gJΦ

)
,

where J = −(1/
√−g)(δΓHD/δΦ).

4.2 Usage of the map M
The next step is to use the map M (3.9) to convert the higher-derivative theory (4.4) into

a theory of the form (4.1). Call G(g, a, b) the function such that for g = G(g, a, b)
∫

d4x
√

−g
[
R(g) + aRµνR

µν
(g) + bR

2
(g)

]
=

∫
d4x

√−gR(g), (4.7)

where the bar on the curvature tensors means that they are those of the metric g, and

define the correction ∆Sm as

∆Sm[ϕ, g, λ, a, b] = Sm[ϕ,G(g, a, b), λ] − Sm[ϕ, g, λ]. (4.8)

Then, (4.7) and (4.8) ensure that

SHD[G(g, a, b), ϕ, λ, a, b, κ] = SAC[g, ϕ, λ, a, b, κ], (4.9)

where the parameters λ′ of (4.1) are just a and b, whose dimensionalities are −2.
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The acausal theory SAC[g, ϕ, λ, a, b, κ] does not contain higher-derivatives terms in the

pure-gravity sector. However, due to ∆Sm, the matter sector contains vertices that depend

non-polynomially on the gravitational field and its derivatives.

The main properties of ∆Sm can be read directly from (4.9). First, the vertices of

∆Sm have dimensionality greater than four. They are constructed with the matter fields,

the Ricci tensor and their covariant derivatives. Moreover, they are proportional to the

Ricci tensor and polynomial in the matter fields (and their covariant derivatives), of the

same degree as Sm. Clearly, ∆Sm[0, g, λ, a, b] = 0.

Using (3.12) the lowest-order contributions to the correction ∆Sm are

∆Sm = ∆S(HEAD)
m + ∆S(QUEUE)

m ,

∆S(HEAD)
m =

∫
d4x

√−g

[
−a

2
T µν

m Rµν +
1

4
(a + 2b)RTm

]
, (4.10)

∆S(QUEUE)
m = O(a2, b2, ab),

where T µν
m = −(2/

√−g)(δSm/δgµν) is the stress-tensor of the uncorrected matter sector

and Tm denotes its trace. Formula (4.10) clarifies the meaning of the couplings a and b in

the acausal theory: they multiply the vertices that couple T µν
m to the Ricci tensor. The

other contributions to ∆Sm are either proportional to T µν
m times derivatives of the Ricci

tensor or quadratically proportional to the Ricci tensor.

The correction ∆Sm falls in the class of non-renormalizable perturbations constructed

in ref.s [19, 21]. In (4.10), the terms ∆S
(HEAD)
m have dimensionality 6. They are multiplied

by independent couplings, a and b, and form the head of the perturbation. The terms

∆S
(HEAD)
m have dimensionalities greater than 6 and form the queue of the perturbation.

Although the queue contains infinitely many vertices, it contains only a finite number of

independent matter operators, generated by the functional derivatives of T µν
m with respect

to the metric. The queue does not contain new independent couplings. Its vertices are

multiplied by functions of the other couplings (a, b, λ and κ), determined by certain

RG consistency conditions, called reduction equations, ensuring that the divergences of

the theory are removed renormalizing the couplings a, b, λ and κ, together with field

redefinitions.

4.3 Renormalizability

The renormalizability of (4.1) is proved using the renormalizability of the higher-derivative

theory (4.4) and the map M. Briefly, the divergences of SHD[g, ϕ, λ, a, b, κ] are renormalized

redefining ϕ, λ, a and b at fixed gµν and κ: since g is a function of g, a and b, the divergences

of SAC[g, ϕ, λ, a, b, κ] are removed redefining g, ϕ, λ, a and b at fixed κ.

The acausal theory is renormalizable if there exists a bare metric tensor gB, depending

only on g and the couplings, such that the bare action

SAC B ≡ SAC[gB, ϕB, λB, aB, bB, κ] (4.11)

produces finite Green functions. The g-redefinition gB that does this job is obtained solving

the condition

G(gB, aB, bB) = G(g, a, b). (4.12)
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More explicitly, calling g = G(g, a, b) the inverse of g = G(g, a, b),

gB = G(G(g, a, b), aB, bB) = g + O(~), (4.13)

and, to the lowest order, using (3.12),

gµνB = gµν + (a − aB)Rµν +
1

2
(aB − a + 2bB − 2b)gµνR + ~O(~, a, b).

Observe that the couplings a and b cancel out in the lowest-order expression, which confirms

that gµνB is truly a field redefinition, not a redefinition of the couplings.

Using (4.11), (4.9), (4.12) and (4.6), SAC B is equal to

SAC B = SHD[G(gB, aB, bB), ϕB, λB, aB, bB, κ] = SHD[G(g, a, b), ϕB, λB, aB, bB, κ] = SHD B.

(4.14)

This equality ensures that the set of Feynman diagrams of the acausal theory is obtained

from the set of diagrams of the higher-derivative theory, once g on the external legs is

replaced with the finite function G(g, a, b). Thus, the Green functions of the acausal theory

are finite and collected in the generating functional

ΓAC[g,Φ, λ, a, b, κ] = ΓHD[G(g, a, b),Φ, λ, a, b, κ]. (4.15)

According to the arguments of section 2, the quantum action SqAC[g, ϕq , λ, a, b, κ] is

the real part of ΓAC[g,Φ, λ, a, b, κ], with the convention that i) g is real and ii) Φ =

ϕq is real if the fields ϕ are real bosonic, while Φ is the conjugate of Φ if the fields ϕ,

ϕ are complex bosonic or fermionic. The gravitational field equations are given by the

variation of SqAC[g, ϕq , λ, a, b, κ] with respect to the metric tensor gµν . The variation of

SqAC[g, ϕq , λ, a, b, κ] with respect to ϕq generates the quantum field equations of matter.

Thus the theory SqAC[g, ϕq , λ, a, b, κ] is a predictive formulation of classical gravity

coupled with quantum matter. No higher-derivative kinetic terms have been added to

the pure-gravity sector. The number of independent couplings is finite: the gravitational

couplings are just three, namely the Newton constant κ, which does not renormalize, plus

a and b; on the other hand, the number of couplings λ belonging to the matter sector is

constrained by power counting.

In the presence of a cosmological constant, the identity (3.13) has to be used. If the

matter sector does not contain parameters with positive dimensionalities in units of mass,

the parameters a, b renormalize exactly as above, and κ, Λ do not renormalize. In the

acausal theory, the true Newton constant is κ̃, which gets renormalized because it is a

function of a, b, κ and Λ. Observe that the cosmological constant Λ is the same on the two

sides of the map M. If the matter sector contains parameters with positive dimensionalities

in units of mass, then there are independent renormalizations of the Newton constant and

the cosmological constant.

4.4 Classical gravity coupled with quantum matter in higher dimensions

The construction of this section can be generalized to higher dimensions. Assume first that

the cosmological constant is zero and the matter sector does not contain parameters of

positive dimensionalities in units of mass.
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On the higher-derivative side of the map M, the counterterms can be classified in two

subsets, in connection with the expansion of the metric tensor around flat space, gµν = ηµν+

hµν : i) “kinetic counterterms”, namely counterterms that contain contributions quadratic

in h; ii) “vertex counterterms”, namely counterterms that do not contain contributions

quadratic in h.

The kinetic counterterms can always be converted into counterterms quadratically

proportional to the Einstein field equations [22], which can be reabsorbed by the map M,

plus vertex counterterms. The vertex counterterms can be quadratically proportional to

the Einstein field equations or not. Those that are can be reabsorbed by the map M,

those that are not must be included in Sm, multiplied by independent couplings. With

these arrangements the theorem of section 2 applies.

For example, in six dimensions [23], kinetic counterterms of dimensionality 6 are

∫ √
−g Rµνρσ5α5

α
R

µνρσ
,

∫ √
−g 5αRµνρσ5

µ
R

ανρσ
, (4.16)

etc. Using partial integrations and Bianchi identities, and commuting derivatives, these

counterterms can be converted into terms quadratically proportional to the Ricci tensor,

which can be reabsorbed by the map M, plus vertex counterterms. Vertex counterterms

are

∫ √
−g R

ρσ
µν R

µν
αβ R

αβ
ρσ ,

∫ √
−g R

ν
µR

ρσ
να R

µα
ρσ ,

∫ √
−g R

ν
µR

µ
ρR

ρ
ν , (4.17)

etc. The third of (4.17) can be reabsorbed by the map M, while the other two must be

included in Sm, multiplied by independent couplings.

The vertex counterterms can be ignored in the quadratic analysis of causality violations

(see the next section).

In the presence of a cosmological constant, or if the matter sector contains parameters

with positive dimensionalities in units of mass (which generate the cosmological constant

by renormalization), it is convenient to expand the metric gµν = g
(0)
µν + hµν around a

maximally symmetric metric g
(0)
µν , such that

R(0)
µνρσ =

2Λ

(d − 1)(d − 2)

(
g(0)
µρ g(0)

νσ − g(0)
µσ g(0)

νρ

)
,

where d is the spacetime dimension. The gravitational counterterms are more conveniently

rearranged as functions of the hatted Riemann tensor

R̂µνρσ = Rµνρσ − 2Λ

(d − 1)(d − 2)
(gµρgνσ − gµσgνρ)

and its covariant derivatives, because R̂µνρσ vanishes on the metric g
(0)
µν . Again, the coun-

terterms can be distinguished into kinetic counterterms (those that contain contributions

quadratic in h) and vertex counterterms (those that do not contain contributions quadratic

in h). It was shown in [22] that the kinetic counterterms can be converted into terms
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quadratically proportional to R̂µν or its covariant derivatives, which are reabsorbed by the

map M, plus vertex counterterms, plus a linear combination of R and 1, that renormalize

the Newton constant and the cosmological constant. There is only one case where this fact

is not obvious, namely R̂µνρσR̂
µνρσ

. However, the combination

Ĝ = R̂µνρσR̂
µνρσ

− 4R̂µνR̂
µν

+ R̂
2
+

8(d − 3)

(d − 1)(d − 2)
Λ

(
R − 2Λ

)

= RµνρσR
µνρσ − 4RµνR

µν
+ R

2 − 4
(d − 3)(d − 4)

(d − 1)(d − 2)
Λ(R − Λ),

does not contain h-quadratic contributions, thanks a peculiar identity [22],

∫ √−g Ĝ =
32(d − 3)

(d − 1)(d − 2)2
Λ2

∫ √
−g(0) + O

(
h3

)
,

which proves that Ĝ is a vertex counterterm. The counterterms R̂µνρσ∇λ1 · · · ∇λn
R̂αβγδ ,

n > 0, with indices contracted in all possible ways, can be reduced by means of repeated

partial integrations, commutations of covariant derivatives and applications of the Bianchi

identities.

The counterterm
∫ √−g Ĝ and the other vertex counterterms cannot, in general, be

reabsorbed by the map M. They have to be included in Sm, multiplied by independent

couplings. If the matter sector is a power-counting renormalizable theory (which, in d > 4,

means just a free theory, or the ϕ3 theory in five and six dimensions), embedded in curved

space, then the action S
(Λ)
HD contains a finite number of terms, therefore the acausal theory

S
(Λ)
AC has a finite number of independent couplings.

Finally, in three spacetime dimensions the action (4.1) is renormalizable with ∆Sm = 0.

Indeed, a three-dimensional power-counting renormalizable theory in curved space gener-

ates no higher-derivative pure-gravity counterterm: the Lorentz Chern-Simons term is

protected [24]; all other higher-derivative terms constructed with the Riemann and Ricci

tensor have at least dimensionality four. So, there is no causality violation in three dimen-

sions. In higher dimensions higher-derivative terms can be generated, but they must be

multiplied by parameters with positive odd dimensionalities. If such parameters are not

contained in Sm, then causality is not violated. If such parameters are contained in Sm,

then the procedure of even-dimensional theories has to be applied and there are causality

violations.

5. Higher time derivatives, instabilities and causality violations

In general, the map M converts a causal classical theory with instabilities, originated by

higher derivatives in the kinetic term, into an acausal classical theory without instabilities.

This section is devoted to study these properties in more detail, including the effects of the

radiative corrections.

To illustrate the logic of the discussion, it is convenient to recall the analysis of the

Abraham-Lorentz force (see for example [11]). In classical electrodynamics an effective
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description of the Larmor formula

P = mτa2, τ =
2e2

3mc3
, (5.1)

for the radiation power emitted by an accelerated particle in the adiabatic approximation

is provided by the higher-derivative equation

ma(t) = mτȧ(t) + F (t), (5.2)

where a is the acceleration and F (t) is an external force. The term mτȧ is the Abraham-

Lorentz force. Equation (5.2) can be integrated one time, to give

ma(t) = −1

τ

∫ t

−∞
dt′ e(t−t′)/τF (t′) + ma0e

t/τ , (5.3)

where a0 is the arbitrary constant. The solution (5.3) is causal, since it depends only on

the force F (t′) at earlier times t′ < t. The second term is a runaway solution, which is the

sign of instability. It is present even when there are no external forces.

Observe that in (5.3) the contribution of the force at earlier times t′ < t is exponentially

amplified. The reason is that the limits τ → 0 of equation (5.2) and its solution (5.3) are

singular. However, physics suggests that such a limit should exist, since τ in (5.1) is

proportional to the square of the charge.

The τ → 0 limit becomes regular only if the constant a0 is set equal to

a0 =
1

mτ

∫ ∞

−∞
dt′ e−t′/τF (t′).

Then (5.3) becomes

ma(t) =
1

τ

∫ ∞

t
dt′ e(t−t′)/τF (t′). (5.4)

The τ → 0+ limit of this equation is F = ma, as desired. Equation (5.4) is a physically

reasonable replacement of the Abraham-Lorentz force. However, (5.4) is not equivalent

to (5.2). Every solution of (5.4) solves (5.2), but not vice versa. The runaway solution is

eliminated and at F = 0 the acceleration vanishes. The effective force felt by the particle

is a time average of the true force F . The acceleration of the particle at a time t depends

on the force F at future times t′ > t, so causality is violated. Summarizing, the physics

described by equation (5.2) is causal but unstable, while the physics of equation (5.4) is

stable but acausal.

The causality violations are short-range, the range being of the order ∆t ∼ τ . Numer-

ically, ∆t ∼ 10−22sec. Since quantum effects become important already at time intervals

of the order of 137τ , the causality violations predicted by equation (5.4) are unobservable.

Writing

ma =
1

1 − τ d
dt

F, (5.5)

it becomes evident that the runaway solution, which is the zero mode of 1−τd/dt, is lost in

the inversion of this operator, demanding the regularity of the τ → 0 limit. The inversion

of 1 − τd/dt is the map M that relates the equations (5.2) and (5.4).
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Observe that the presence of instabilities, or causality violations, is related to the sign

of τ . No instability nor causality violation occurs for τ < 0.

The rearrangement of equation (5.2) into formula (5.5), interpreted in the usual low-

energy expansion, which throws away the unstable solutions, is known in the literature

as the regular reduction of the order of the differential equation and can be done also for

gravity [12, 13].

Although inspired by the arguments just recalled, the map M differs from the regular

reduction in a crucial way. The regular reduction is not a field redefinition, but a manip-

ulation of the field equations. In the case of gravity, the analogue of this operation [12]

is a manipulation of the field equations of higher-derivative gravity, coupled with classical

or quantum matter, which leaves the metric tensor unchanged. It is not known how to

implement the regular reduction for gravity at the level of the action. The construction of

this paper, instead, is performed at the level of the action and implemented by iterative

field redefinitions of the metric tensor that renormalize the counterterms RµνRµν and R2.

Typical signs of the difference between the two approaches are the square roots of (3.25),

which appear naturally in the map M, but do not appear in (5.5) and in the approach

of [12]. Observe that it is not possible to derive the Abraham-Lorentz force from an action,

which is why now I abandon this analogy and proceed with the description of the approach

of this paper in lagrangian models.

Consider the higher-derivative theory

L′(q) =
m

2
q̇2 +

mα2

2
q̈2 ≡ L(q) + ∆L(q), L(q) =

m

2
q̇2.

The term ∆L is quadratically proportional to the field equations of L. The map M is

q(q′) =
1√

1 − α2 d2

dt2

q′, (5.6)

so that ∫
dt L′(q) =

∫
dt L(q′). (5.7)

More explicitly,

q(t) =

∫ +∞

−∞
dt′ C(t − t′)q′(t′), C(t) =

∫ +∞

−∞

dk

2π

e−ikt

√
1 + α2k2

. (5.8)

According to the discussion about the Abraham-Lorentz force, the map M should tend

to the identity in the limit α → 0, which is implicit in (5.8). Nevertheless, there might

exist different prescriptions to define C(t). Every prescription has the same perturbative

expansion in powers of α.

When α2 > 0 (assume α > 0 without loss of generality) the solutions of the field

equations of L′(q) and L(q′) read

q(t) = at + b + cet/α + de−t/α, q′(t) = a′t + b′, (5.9)
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respectively. At finite non-vanishing α, q(t) contains two solutions (one of which is runaway)

that are absent in q′(t). When α2 < 0 the exponentials are replaced by sine and cosine

functions and there is no runaway solution. Finally, q(t) is singular in the limit α → 0.

If the system is subject to an external time-dependent force F (t), the lagrangian

L′(q, F ) =
m

2
q̇2 +

mα2

2
q̈2 + qF (t), (5.10)

is mapped by (5.6) into

L(q′, F ′) =
m

2
q̇′2 + q′F ′(t), F ′(t) =

1√
1 − α2 d2

dt2

F (t) =

∫ +∞

−∞
dt′ C(t− t′)F (t′). (5.11)

so ∫
dt L′(q(q′), F ) =

∫
dt L(q′, F ′(F )). (5.12)

Consider the function C(t) in (5.8) and (5.11). For α2 > 0 the integral (5.8) is conver-

gent and gives

C(t) =
1

π|α|K0

( |t|
|α|

)
, if α2 > 0. (5.13)

Causality is violated, since F ′(t) depends on the force F (t′) at future times t′. The range

of the causality violations is ∆t = |α|.
When α2 < 0 it is necessary to specify a prescription for the contour integration in

the complex plane. There is a real causal prescription, which gives the retarded function

Cret(t),

Cret(t) =

∫ +∞

−∞

dk

2π

e−ikt

√
1 + α2(k + iε)2

=
θ(t)

|α| J0

( |t|
|α|

)
, if α2 < 0. (5.14)

The advanced function is Cadv(t) = Cret(−t). A complex acausal prescription is studied

below in arbitrary spacetime dimensions: see formula (5.19).

Summarizing, the theory L(q′, F ′) has no unstable solution. It violates causality for

α2 > 0 and admits a causal prescription for α2 < 0.

Again, the redefinition (5.8) maps two physically inequivalent theories. Once it is

known whether q or q′ are the physical fields, and whether F or F ′ are the physical forces,

the physics follows from the appropriate lagrangian, (5.10) or (5.12).

5.1 Fields

Consider the scalar theory

L′(ϕ, J) =
1

2
(∂µϕ)(∂µϕ) +

1

2
α2(¤ϕ)2 + ϕJ (5.15)

in n spacetime dimensions. The map

ϕ′ =
√

1 − α2¤ϕ (5.16)
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relates (5.15) with the theory

L(ϕ′, J ′(J)) =
1

2
(∂µϕ′)(∂µϕ′) + ϕ′J ′, J ′(x) =

∫
dnx′ Cn(x − x′)J(x′), (5.17)

where

Cn(x) =

∫
dnk

(2π)n
e−ik·x

√
1 + α2k2

. (5.18)

Again, the regularity of the α → 0 limit is understood in (5.18).

Fields of higher spins can be treated similarly. In every case, the function Cn(x) is the

essential ingredient of the map M. For gravity in the quadratic approximation the map

M is collected in formulas (3.16) and (3.24) and involves the functions Cn(x) with α2 equal

to a or b′.

The Fourier transform (5.18) has to be defined with an appropriate prescription. It is

convenient to begin with the prescription [25]

CF
n (x) =

∫
dnk

(2π)n
e−ik·x

√
1 + α2k2 + iε

=
e−i π

4
[2(n−1)+(n−2)(sign(α2)−1)]

2(n−1)/2π(n+1)/2|α|n
K(n−1)/2

(√
x2

α2 − iε′
)

(
x2

α2 − iε′
)(n−1)/4

,

(5.19)

which illustrates the main features of the function Cn(x). Observe that CF
n (x) is complex,

but recall that the quantum action SqAC is the real part of the functional ΓAC of (4.15).

In even dimensions the function CF
n (x) is quite simple. For example,

CF
4 (x) =

sign(α2)

4π2|α|4
i exp

(
−

√
x2

α2 − iε

)

(
x2

α2 − iε
)3/2

(
1 +

√
x2

α2
− iε

)
. (5.20)

The exponential tends to zero or rapidly oscillates for |x2| À |α2|, so the causality violations

can be experimentally tested only at distances of the order of

∆x ∼ 2π|α| (5.21)

and become physically unobservable at distances much larger than this bound.

For α2 = −α2 < 0 there is a real causal prescription, namely the retarded function

Cret
n (x) =

∫
dnk

(2π)n
e−ik·x

√
1 − α2 (k0 + iε)2 + α2k2

, (5.22)

which vanishes for t < 0. Indeed, the branch cuts are located in the lower half k0-plane and

if t < 0 it is possible to close the contour of integration in the upper half plane (Im k0 > 0).

By Lorentz invariance, every point outside the light-cone admits a reference frame in which

t < 0, so Cret
n (x) vanishes identically outside the light-cone. The advanced function Cadv

n (x)

is defined as in (5.22) with k0 + iε → k0 − iε. In the non-relativistic limit,

Cn(x) →
2δ(t)Kn/2−1(r/α)

(2πα)n/2rn/2−1
, (5.23)
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independently of the prescription, where x = (t,x) and r = |x|. For α2 > 0 no causal

prescription exists. When α → 0 the functions Cn(x) tend to (2π)nδn(x), independently of

the prescription. When α2 → ∞ they tend to zero.

The map M : SHD → SAC is essentially classical, because it applies to a classical

theory, or to the classical sector of a partially classical, partially quantum theory. The

generalization of the map M to quantum gravity should convert higher-derivative quantum

gravity into acausal quantum gravity, preserving the renormalizability. Higher-derivative

quantum gravity is renormalizable, but not unitary [26]. The violation of unitarity is

exhibited by the propagation of ghosts, which are the quantum counterparts of the classical

instabilities. However, the renormalization of higher-derivative quantum gravity is singular

in the limit where a, b′ tend to zero. It has been remarked above that the smoothness of

these limits is an essential ingredient for the map M, to trade the instabilities for causality

violations (check the discussion about the τ → 0 limit of the Abraham-Lorentz force).

The quantum map M should be able convert unitarity violations into causality viola-

tions, preserving the renormalization structure. Once again, the map M cannot be a field

redefinition, because a field redefinition preserves the renormalization structure, but does

not change the poles of the S-matrix elements (see [27]). A naive application of the map

M in the functional integral restores the ghosts by means of the Jacobian determinant. In

conclusion, the construction of a good map M for quantum gravity has to be left to future

investigations.

5.2 Effects of the radiative corrections

At the tree level, the presence of causality violations depends on the sign of α2. When α2 <

0, causal prescriptions exist for Cn(x), when α2 < 0 there is no causal prescription. Beyond

the tree-level, the logarithmic corrections spoil the causal prescriptions. Nevertheless, the

causality violations affect only high energies.

Consider classical gravity coupled with a renormalizable quantum field theory. At one

loop the a-running is governed by the trace anomaly of the matter sector in curved space.

To the lowest order the beta functions are [28, 29]

1

κ2
βa = −4c + O(λ),

1

κ2
βb′ = κ2O(λ), (5.24)

where λ denotes the matter couplings, including the parameter η of formula (4.3), and

c =
12nv + 6nf + ns

120(4π)2
, (5.25)

where ns is the number real scalars, nf is the number of Dirac fermions and nv is the

number of vector fields. For example, in QED

βa = − 3κ2

5(4π)2
− 7

9

κ2e2

(4π)4
+ κ2O(e4), βb′ = −16

27

e6κ2

(4π)8
+ κ2O(e8).

To illustrate the effects of radiative corrections it is sufficient to concentrate on the

first contributions to the beta functions. Assume that the interactions of the matter sector
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are switched off (λ = 0), namely that the matter sector is a free-field theory in curved

space. Then the renormalization of a and b′ is exact,

βa = −4cκ2, βb′ = 0. (5.26)

The exactness of formulas (5.26) holds in a larger class of models, those whose matter

sector is a conformal field theory C embedded in external gravity. Then c is not (5.25),

but a characteristic quantity of C, called “central charge” c (see for example ref.s [30] for

definitions and properties). According to (5.26), the parameter b′ does not run, but a does.

The a-running is

a(−p2) = a − 2cκ2 ln
−p2

µ2
= −2cκ2 ln

−p2

Λ2
, Λ ≡ µ exp

(
a

4cκ2

)
, (5.27)

where a = a(µ2) and Λ is the energy scale at which the running coupling switchs its sign.

I stress again that (5.27) is an exact formula for an important class of models. Thus,

it is mandatory to investigate the physical effects of the a-running at the non-perturbative

level in a and κ2.

Write the higher-derivative action SHD(g) (3.10) as

SHD[g] =
1

2κ2

∫ √−g

[
R +

a

2
W µνρσWµνρσ − b′

6
R2

]
,

where W µνρσ is the Weyl tensor. The one-loop quantum functional Γ reads, in the gravity

sector,

ΓHD =
1

2κ2

∫ √−g

[
R − cκ2W µνρσ ln

(
¤

Λ2

)
Wµνρσ − b′

6
R2

]
,

up to cubic terms in the curvature tensors.

In the quadratic approximation, with the gauge fixing (3.19)–(3.20), the map M re-

lating the higher-derivative quantum functional ΓHD with the acausal functional ΓAC,

ΓHD =
1

2

∫
d4x

{
(∂µφ̃ρσ)2 − 2cκ2(¤φ̃µν) ln

(
¤

Λ2

)
(¤φ̃µν) − 3

8

[
(∂µφ)2 + b′(¤φ)2

]}

=
1

2

∫
d4x

{
(∂µφ̃′

ρσ)2 − 3

8
(∂µφ′)2

}
= ΓAC,

is promoted, by dimensional transmutation, to the renormalization-group invariant form

φ̃µν =
1√

1 + 2cκ2¤ ln
(

¤

Λ2

) φ̃′
µν , φ =

1√
1 − b′¤

φ′. (5.28)

According to the arguments of section 2, the quantum action SAC is the real part of ΓAC,

with the convention that φ′ is real.

The function C4(x) mapping the traceless part φ̃µν is

C4(x) =

∫
d4p

(2π)4
e−ip·x

√
1 + 2ξ−p2

Λ2 ln −p2

Λ2

, (5.29)
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where ξ = cκ2Λ2. The prescription for ln
(
¤/Λ2

)
is determined by the Feynman prescrip-

tion for the propagators of the matter fields that circulate in the loops, so in momentum

space

ln

(−p2

Λ2

)
→ ln

(−p2 − iε

Λ2

)
.

Closing the contour of the p0-integration in the upper half p0-plane at infinity, the phase

of p0 ranges from 0 to π and the phase of p2 crosses the branch cut of the logarithm. The

function C4(x) receives a contribution from the integral along the cut and does not vanish

for t < 0. Moreover, since the integral along the cut is not purely imaginary, even ReC4(x)

is non-vanishing for t < 0. Other non-vanishing contributions can come from the cuts of

the square root. In conclusion, causality is violated due to the radiative corrections.

A prescription for the other factor of p2 in (5.29) can be obtained generalizing the

prescription (5.19). Then C4(x) is

C4(x) =

∫
d4p

(2π)4
e−ip·x

√
1 − 2ξ p2+iε

Λ2 ln
(
−p2+iε

Λ2

) . (5.30)

At sufficiently low energies, the function C4(x) is not sensibly different from the identity

(2π)4δ(x). The acausal behavior can be observed starting from energies E such that

E2a(E2) ∼ 1.

So far, the gravitational force has been tested down to distances of the order of 0.1 millime-

ters, which means energies about 2 · 10−3eV, without observing acausal behaviors. Thus

the value a(E2) of the coupling a at that energy is bounded by

|a(E)| < 2.5 · 105(eV)−2.

6. Conclusions

I have proved that classical gravity coupled with quantized matter can be renormalized

with a finite number of independent couplings, without adding higher-derivative terms

to the gravitational sector. Instead, the theory contains vertices that couple the matter

stress-tensor with the Ricci tensor and predicts the violation of causality at small distances.

The proof of renormalizability uses a map M that relates acausal gravity with higher-

derivative gravity. The map M, inspired by known treatments of the Abraham-Lorentz

force in classical electrodynamics, trades the instabilities due to higher-derivatives for

causality violations. The field equations of a partially classical, partially quantum field

theory follow from a suitable minimization principle.

The matter sector is an ordinary power-counting renormalizable theory in curved space,

with couplings λ, plus a non-renormalizable perturbation, made by a head and a queue.

The head contains two vertices that couple the matter stress-tensor with the Ricci ten-

sor, multiplied by independent couplings a and b′. The queue contains an infinity of

higher-dimensioned vertices, polynomial in the matter fields, but non-polynomial in the
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gravitational field and its derivatives. The queue does not contain new independent cou-

plings, rather its vertices are multiplied by appropriate functions of the other couplings,

such that the divergences of the theory are subtracted away renormalizing λ, a, b′, the

Newton constant and the cosmological constant, together with field redefinitions. The

causality violations are due to the resummation of derivatives in the vertices that couple

matter with gravity.

The analysis of causality violations has been performed in a regime in which the gravi-

tational field is weak, which means much smaller than the Planck mass, but rapidly varying.

For a gravitational field of the order of the Planck mass or higher it is necessary to treat

the Einstein equations coupled with matter exactly or with more powerful approximation

methods. In principle there might exist causal strong-field configurations. Here it was im-

portant to show that there do exist configurations that violate causality at small distances.

The causality violations are governed by the parameters a and b′. Their values need

to be experimentally measured. Bounds can be derived from the tests on the validity of

Newton’s law at short distances. At the tree level, causal prescriptions exist, if a and b′

are negative, but the radiative corrections make a and b′ run and switch their signs. Thus

there always exist configurations that violate causality at sufficiently short distances.

On the higher-derivative side of the map M, a and b′ multiply combinations of the

terms RµνRµν and R2. The map M provides a new interpretation of the physical meaning

of such terms.

Strictly speaking, the investigation of this paper makes sense only if gravity is ulti-

mately classical in nature. More generally, the knowledge provided by this research may

be interesting to suggest experiments to decide whether gravity must be quantized or not.

Although the map M does not generalize straightforwardly to quantum gravity, some

conclusions of this paper could. Quantum gravity, being non-renormalizable, is necessarily

non-polynomial in the fields and their derivatives. Quite generally, the resummation of

derivatives can produce causality violations, with a mechanism similar to the one illustrated

here. Therefore, it is reasonable to expect that high-energy causality violations take place

also in quantum gravity.
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